Exact analytical approach for free longitudinal vibration of nanorods based on nonlocal elasticity theory from wave standpoint

نویسندگان

  • Mohammad Reza Hairi Yazdi
  • Mansour Nikkhah-Bahrami
  • Masih Loghmani
  • Hairi Yazdi
چکیده

Article history: Received 20 September 2016 Received in revised form 11 May 2017 Accepted 14 May 2017 Available online 10 June 2017 In this paper, free longitudinal vibration of nanorods is investigated from the wave viewpoint. The Eringen’s nonlocal elasticity theory is used for nanorods modelling. Wave propagation in a medium has a similar formulation as vibrations and thus, it can be used to describe the vibration behavior. Boundaries reflect the propagating waves after incident. Firstly, the governing equation of nanorods longitudinal vibration based on the Eringen’s nonlocal elasticity theory is derived. Secondly, the propagation matrix for nanorod waveguide is derived and then the reflection matrix for spring boundary condition is calculated. The relations between amplitudes of propagation and reflection waves in the waveguide dominant are then combined in a matrix form format to set up a laconic efficient method for free axial vibration analysis of nanorods. The exact analytical solution for arbitrary boundary conditions natural frequencies is derived. To validate this approach, the exact solutions of special boundary conditions cases (clamped-clamped and clamped-free) are used. At the end, the effect of nonlocal parameter on the natural frequencies and boundary stiffness for arbitrary boundary condition is discussed. © 2017 Iranian Society of Acoustics and Vibration, All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact analytical approach for free longitudinal vibration of nanorods based on nonlocal elasticity theory from wave standpoint

In this paper, free longitudinal vibration of nanorods is investigated from the wave viewpoint. The Eringen’s nonlocal elasticity theory is used for nanorods modelling. Wave propagation in a medium has a similar formulation as vibrations and thus,  it can be used to describe the vibration behavior. Boundaries reflect the propagating waves after incident. Firstly, the governing quation of nanoro...

متن کامل

Axially Forced Vibration Analysis of Cracked a Nanorod

Thisstudy presents axially forced vibration of a cracked nanorod under harmonic external dynamically load. In constitutive equation of problem, the nonlocal elasticity theory is used. The Crack is modelled as an axial spring in the crack section. In the axial spring model, the nonrod separates two sub-nanorods and the flexibility of the axial spring represents the effect of the crack. Boundary ...

متن کامل

Vibration Analysis of FG Nanoplate Based on Third-Order Shear Deformation Theory (TSDT) and Nonlocal Elasticity

In present study, the third-order shear deformation theory has been developed to investigate vibration analysis of FG Nano-plates based on Eringen nonlocal elasticity theory. The materials distribution regarding to the thickness of Nano-plate has been considered based on two different models of power function and exponential function. All equations governing on the vibration of FG Nano-plate ha...

متن کامل

Influences of Small-Scale Effect and Boundary Conditions on the Free Vibration of Nano-Plates: A Molecular Dynamics Simulation

This paper addresses the influence of boundary conditions and small-scale effect on the free vibration of nano-plates using molecular dynamics (MD) and nonlocal elasticity theory. Based on the MD simulations, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is used to obtain fundamental frequencies of single layered graphene sheets (SLGSs) which modeled in this paper as the mo...

متن کامل

A Nonlocal First Order Shear Deformation Theory for Vibration Analysis of Size Dependent Functionally Graded Nano beam with Attached Tip Mass: an Exact Solution

In this article, transverse vibration of a cantilever nano- beam with functionally graded materials and carrying a concentrated mass at the free end is studied. Material properties of FG beam are supposed to vary through thickness direction of the constituents according to power-law distribution (P-FGM). The small scale effect is taken into consideration based on nonlocal elasticity theory of E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017